
S-1 Common Lisp Implementation
Rodney A. Brooks

Massachusetts Institute of Technology

Richard P. Gabriel
Stanford University and Lawrence Livermore National Laboratory

Guy L. Steele Jr.
Carnegie-Mellon University

We are developing a Lisp implementation for the Lawrence Livermore National Laboratory S-1 Mark
IIA computer. The dialect of Lisp is an extension of COMMON Lisp[Steele 1982], a descendant of MacLisp
[Moon 1974] and Lisp Machine Lisp [Weinreb 1981]).

1. Language Overview

Properties of this particular Lisp dialect which distinguish it from other dialects of Lisp:

— Functions are full-fledged data objects of the language. One may pass around a function (compiled or
interpreted) rather than a symbol whose expr or subr property is the function.

— This dialect supports lexically scoped variables as well as dynamically scoped variables. Because it is
permissible for a function to return as its value another function, sometimes environment structures
must be heap-allocated rather than stack-allocated. See [Sussman 1975], [Steele 1976a], [Steele 1978].

— The language has “tail-recursive” semantics: recursive procedures of a certain form have iterative
behavior. See [Burstall 1977], [Hewitt 1977], [Steele 1976a], [Steele 1976b], [Steele 1977]. For example,
the following procedure behaves iteratively (it will not produce stack overflow for large N, for example):

(defun expt1 (x n a) ;Compute $ax^n$
(cond ((zerop n) a) ;by repeated squaring

((oddp n)
(expt1 (* x x)

(floor n 2) (* a x)))
(t (expt1 (* x x)

(floor n 2) a) )))

— Functions can return more than one value, or zero values. (In most cases the caller will discard all
values but the first, or treat zero values as the null value, but special constructs are provided to call a
function and retrieve all the values.)

— A rich set of numerical data types is provided, including integers of indefinite size, rational numbers,
floating-point numbers of several precisions, and complex numbers.
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§ 1 Language Overview

— The language supports multiprocessing in that it is implemented on a multiprocessor computer. One
result is that S-1 Lisp is deep bound.

2. Target Architecture

The S-1 architecture [Correll 1979] has some unusual features (as well as some ordinary ones):

— Words are 36 bits, quarter-word addressable (bytes are 9 bits, not 8).

— Virtual addresses are 31 bits plus a five-bit tag. Nine of the 32 possible tags have special meaning to
the architecture (to implement MULTICS-like ring protection, among other things); the others may
be used freely as user data-type tags.

— Most arithmetic instructions for binary operations are “2-1/2 address”. The three operands to ADD
may be in three distinct places, provided that one of them is one of the two special registers named
RTA and RTB. If the destination and one source are identical, then both addresses may be general
memory locations (as in the PDP-11). As an example, these patterns are permissible for the “subtract”
instruction (M1 and M2 are arbitrary memory or register addresses):

SUB M1,M2 ;M1 := M1 - M2
SUB RTA,M1,M2 ;RTA := M1 - M2
SUB RTB,M1,M2 ;RTB := M1 - M2
SUB M1,RTA,M2 ;M1 := RTA - M2
SUBV M1,M2 ;M1 := M2 - M1
SUBV M1,RTA,M2 ;M1 := M2 - RTA

— A variant of IEEE proposed standard floating-point is provided, including special “overflow”, “under-
flow”, and “undefined” values.

— There are sixteen rounding modes for floating-point operations and for integer division (thus FLOOR,
CEIL, TRUNC, ROUND, MOD, and REMAINDER are all primitive instructions).

— There are single instructions for complex arithmetic, SIN, COS, EXP, LOG, SQRT, ATAN, and so on.

— There are vector processing instructions to perform component- wise arithmetic, vector dot product,
matrix transposition, convolution, Fast Fourier Transform, and string processing.

— The standard configuration is a multiprocessor; synchronization instructions are available to the user.
(This are in turn made available to the Lisp user. Moreover, the run-time system, and especially the
garbage collector, has been written with multiprocessing in mind.)

3. Data Types

In S-1 Lisp the type of a data object is encoded primarily in the pointer to that data object, and
secondarily in the storage associated with the object, if any. It is important that all pointers to a data object
have a type field consistent with that object.
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§ 3 Data Types

The format of a pointer in S-1 Lisp is a single-word with a type in bits 〈0:4〉 and an address or immediate
datum in bits 〈5:35〉. This is consistent with the S-1 Mark IIA pointer format.

The data types are defined as follows:

Type Use within S-1 Lisp
0 Positive fixnum
1 Unused
2 Unbound marker
3 Self-relative
4 Program Counter
5 Program Counter
6 Program Counter
7 Program Counter
8 GC Pointer (used only by the garbage collector)
9 reserved

10 Named vector (user data structure)
11 Named array (user data structure)
12 Halfword (immediate) floating-point number
13 Singleword floating-point number
14 Doubleword floating-point number
15 Tetraword floating-point number
16 Halfword complex floating-point number
17 Singleword complex floating-point number
18 Doubleword complex floating-point number
19 Tetraword complex floating-point number
20 Extended number
21 Code pointer
22 Procedure or stack group
23 Array
24 General vector
25 Specialized vector
26 String (vector of string-characters)
27 Character
28 Symbol
29 Pair (cons cell)
30 Empty list
31 Negative fixnum

Subtypes of vectors and arrays are encoded in the header word of the object. The subtype of a vector
depends on the types of its components; these subtypes are pointer, bits, and numeric data types Quarterword
integers, Halfword integers, Singleword integers, Doubleword integers, Signed byte integers, Unsigned byte
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integers, Halfword floating-point, Singleword floating-point, Doubleword floating-point, Tetraword floating-
point, Halfword complex floating-point, Singleword complex floating-point, Doubleword complex floating-
point, Tetraword complex floating-point, Halfword complex integer, and Singleword complex integer

The subtypes of arrays are the same as vectors.

Numbers are represented internally in a variety of ways in order to conserve space and time for common
situations. In particular, integers in the range [−231, 231 − 1], as well as half-word floating-point numbers,
are represented in an “immediate” format, so that one need not allocate heap storage when such numbers are
generated. Numbers are also represented in fixed-precision multiple-word formats, and in indefinite-precision
formats. The details are given below.

Numbers may be divided into scalars and complex numbers. Complex numbers are represented as pairs
of scalars in one format or another. Scalars may be divided into integers, ratios, and floating-point numbers.
These three classes are further subdivided by internal storage types. All classes of numbers have provision
for a representation with indefinitely large precision.

Data type 0 is used for positive integers, and data type 31 for negative integers. This implies that
an immediate integer is in fact in true two’s-complement form and can be utilized directly by arithmetic
instructions. (The results of such instructions must, however, be range-checked; they cannot in general be
assumed to be in this format.)

Larger integers are represented as extended numbers in a bit-vector format to be determined by multiple-
precision instruction set.

Ratios are represented in extended number format.

Floating-point numbers come in five representations: halfword, singleword, doubleword, tetraword, and
indefinite precision. The first is an immediate data type; the half-word floating-point value is stored in the
low eighteen bits of the pointer. In the singleword, doubleword, and tetraword representations, the pointer
simply points to a singleword, doubleword, or tetraword containing the hardware data format. Indefinite-
precision floating-point numbers are represented in extended-number format.

Similarly complex numbers come in five formats. Those whose components are halfword floating-point
numbers are represented as singlewords, those whose components are singleword floating-point numbers are
represented as doublewords, those whose components are doubleword floating-point numbers are represented
as four consecutive words, and those whose components are tetraword floating-point numbers are represented
as eight consecutive words. In each case the representation consists of the real part followed by the imaginary
part in standard floating-point format; the pointer points to the first of the words. A general complex number
is a kind of extended number.

Numbers of fixed precision are represented in a vector-like format. There is no subtype field for numbers
of fixed precision.

Extended numbers are vector-like objects, with the subtype field distinguishing the kinds of numbers.
The vectors contain markable pointers. The following extended numbers are supported:

Bignum: This is an indefinite-precision integer. The data area contains a single pointer to a bits vector.
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Bigfloat: Large floating-point numbers are represented as a set of integers; the precise format remains to
be worked out

General complex: The data area contains two pointers, the real and imaginary parts of the complex
number. Each part may be any kind of scalar number.

Ratio: The data area contains two pointers, the numerator and denominator of the ratio. Each pointer may
be any kind of integer; the denominator, however, must be strictly positive.

4. Procedures

Procedures are the only kind of callable object. Any object that can be in the function cell of a symbol
must be a procedure. Macros, fexprs, stack groups, and closures are all kinds of procedures.

Procedures are represented as two vectors, one being a (markable) vector of type “procedure” and the
other a (non-markable) vector of type “code”. The first vector is the procedure object itself, and contains a
pointer to the second vector, as well as the “local environment” (if any), pointer constants used by the code,
a name, GC information (relevant to determining the stack frame format), and debugging information. The
code itself is in the second vector. The pointer vector must be in S-1 Data space, and the code must be in
Instruction space (in fact it is in an Instruction/Data space).

There are various ways to call a procedure. Every procedure has a “primary” calling mode, which the
compiler of callers will choose as the result of declarations. However, any procedure can support all modes
of entry; a patch-up routine is called if necessary.

The calling modes are elements of the Cartesian product of these sets:

{Normal, Numeric} × {Single-value, Multiple-value}

A normal call is expected to return its result(s) as pointers; a numeric call is expected to return machine-
format numbers for its numerical results. A single-valued procedure returns one value; a multiple-valued
procedure may return any number of values.

When a procedure is called the caller will have loaded into a specific register a descriptor, or signature,
for the kind of procedure it expected to call. This contains the number of arguments provided in the address
part, and in the tag field some bits stating whether the calling mode is normal or numeric and whether a
single or multiple value result is expected.

A normal, single-valued procedure call returns its value on the stack in the slot pushed for it by the
caller.

A normal, multiple-valued procedure returns its values on the stack in order, last one on top, the first
being in the slot pushed by the caller. A specific register will contain the negative of the number of returned
values.

A multiple-valued numeric procedure returns its numeric values in one of two ways. There are 8 registers
set aside for the purpose, and if the number of numeric values returned will fit there that is where they are
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put, with non-numeric values on the stack, and a result signature in a specific register. If there are too many
numeric values to fit in provided registers, they are returned as pointers.

The return-value signature is a word encoded in such a way as to describe the types of the returned
values in a precise manner. For every return-value word there are three bits in the signature word.

5. Garbage Collection

S-1 Lisp uses a modified copying garbage collection strategy [Baker 1978]. There are three types of
storage for Lisp objects: dynamic, static, and read-only. Read-only storage contains objects which, once
allocated and initialized, are never relocated, reclaimed, or altered. Static storage contains objects which,
once allocated, are never relocated or reclaimed; however, the contents of a static object may be altered.
Dynamic storage contains objects which may be relocated, reclaimed, and altered at will. Dynamic and
read-only storage are divided into two independent areas for data and code objects. Only code vectors are
stored in the code areas, and everything else in the data areas.

Each type of storage is a linked list of (variable sized) segments provided by the operating system. A
segment consists of some power of two of segmentitos consecutive in the address space. A segmentito is 216

bytes long, and thus the address space is spanned by 32,768 segmentitos. A single table in static space with
one word per segmentito provides all the information necessary to quickly identify the space into which a
pointer is directed, and the status of that space, along with the actual linked list.

All three kinds of storage may be expanded as necessary. However, dynamic storage may also be
shrunk, by reclaiming and discarding unreachable objects. This is done by a transitive copying process.
During garbage collection there are two dynamic storage areas: the old one and a newly created one. All
reachable objects are traced, and objects in the old dynamic space which are found to be reachable are copied
to the new dynamic space. All pointers to such copied objects are updated to reflect the new locations. When
the copying is complete, the entire old dynamic area is discarded.

Read-only objects may not contain pointers to dynamic objects, because it might be necessary to alter
the read-only object to reflect the new location of the dynamic object when copied. When the read-only area
is periodically “frozen”, a garbage-collection-like process is performed wherein any dynamic objects pointed
to by read-only objects are copied to the static area. (That part of the read-only area not yet frozen is
treated as if it were static.)

The choice of a copying, compacting garbage collector puts a number of constraints on the design of
storage layout of data objects and has implications for the amount of run-time error checking necessary to
ensure correctness of the garbage collection process.

Since copied data objects must be scanned in a sweep through the new dynamic space it must be possible
to identify the data type of an object not only from a pointer to it, but also by examining it sequentially in
storage. The approach used is to assume every word of storage is a pointer unless proved otherwise. The
decision strategy must be completely reliable to ensure correct behavior of the garbage collector. CONS
cells are thus simply stored as two consecutive pointers. By convention the first is the CAR and the second
the CDR. A vector of pointers is simply stored as a header word which is a fixnum length followed by
the pointers. The garbage collector does not need to distinguish such an object from consecutive CONS
cells as the fixnum can be identified as such from its own tag field, and the remaining pointers must be
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fowarded anyway. Unmarkable objects (objects composed of other objects that are not pointers and which,
therefore, can display arbitrary bit patterns) must be headed by a word with a distinguishable tag: the GC
tag. The address part of this word can perhaps be used for other header information, such as vector type
for unmarkable vectors. For floating point numbers, for instance, there is no other direct use for the header
word, and its is simply a single word of overhead for every floating point number.

Another requirement is that it must be possible to tell when an object has been forwarded from old
space. Thus there must be a distinguishable way of writing a forwarding pointer into an object. Again the
GC tag is used. For markable objects (such as CONS cells or markable vectors) the first word of storage
can be used. For unmarkable objects (e.g. floating point numbers) the first word of storage can legitimately
contain any pattern of bits so the forwarding pointer must be stored in a header. In most cases objects have
an extra header word (see above) used to identify an object when scanned during the garbage collection
which caused its instantiation. This same word can be used during the next garbage collection as a location
for the forwarding pointer. To make the scheme work it is necessary that the scanning algorithm overwrite
the GC tags used for unmarkable object identification as soon as it scans them, so that the subsequent
garbage collection does not think that the object has already been forwarded. This extra step could be saved
if two distinguishable tags were allocated for garbage collection purposes, rather than the single one used.

Bounds checking during storage of a vector element is necessary to ensure that a pointer does not
clobber valuable header information in another data object. Similarly RPLACD must check on the data
type of the object it is operating upon (for instance, RPLACD of a single word floating point number will
clobber the following storage location). For most data types a spurious RPLACA will at most lead to an
invisible pointer. However procedure headers have their pointers offset by −39 words to maximize short
addressing mode accessibility of their literals and so RPLACA must also run with error checks at all times.
Similar considerations apply to FSET and SETQ.

Bounds checking during vector element reference is necessary to ensure that some non-pointer object
(e.g. a word of a floating point number) does not find its way into a storage location which is markable.
This could lead to incorrect fowarding during garbage collection providing an inconsistent environment and
subsequent degradation due to confused operation of the garbage collector.

The vector storage layout has been designed so that the necessary bounds checking can be carried out
in a single S-1 instruction. This required a slightly increased overhead for strings, but was virtually free in
all other vector-like objects.

Of course, if enough declarations are made the compiler should often be able to deduce the correctness
of the code it is compiling, and so refrain from generating error checking code.

Stacks are allocated in separate segments, rather than as vectors in dynamic data segments. This is
so that the garbage collector can easily recognize stack allocated objects in order to avoid relocating them
twice.

Code vectors are copied and compacted in instruction spaces in the same manner as other objects in
data spaces. All PC’s on stacks must therefore be updated to provide the correct return addresses when
processing resumes. The tag fields of the architecture provide an easy mechanism for detecting PC’s, but the
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structure of the stack frames has to be carefully controlled so that it is possible to identify the code vector
referred to by the address part of the PC in order to find its forwarding pointer.

6. Synchronization

S-1 Lisp allows multiple processes to run concurrently in a single address space, possibly using multiple
S-1 processors. The following conditions and conventions are required to ensure the integrity of the Lisp
data structures:

If a block I/O transfer has been started and an address given to the operating system for it, then no
garbage collection may take place until the transfer has been completed. This is because the region of
storage involved in the transfer must not be relocated out from under the operating system.

Only one process may allocate storage at a time. This is to ensure that the same storage doesn’t get
allocated twice.

No process which refers to pointers into dynamic space may run when a garbage collection is in progress,
as there will be many invalid pointers around.

At no time may a process introduce an invalid pointer into a markable data area.

At no time should any process which is not in the act of allocating storage expect to use storage which
has not had a valid pointer pointing to it since originally allocated.

These requirements are met with the aid of the values of three symbols: allocate-lock, gc-lock, and block-

io-status. The quiescent state values of these variables are −1, −1, and 0, respectively. (These symbols are
pointed to by the systemic quantities vector. They all reside in static space.) Processes such as storage
allocation, garbage collection, and initiators of block I/O transfers coordinate their activities by the values
of these three symbols.

A process which wishes to allocate storage must wait till allocate-lock has a value of −1 and then
indivisibly set it to be non-negative before it can allocate storage. If it finds there is not enough free storage
and for some reason it is not permitted to ask the operating system for more (there is no more, or more
likely the user has set a limit on working set size), it must initiate a garbage collection. The only garbage
collection possible while allocate-lock is non-negative is one initiated by the process which set the lock. When
a storage allocator has a valid pointer to the new object in a markable place, it releases its lock by setting
allocate-lock to −1.

If a garbage collection must be initiated for some other purpose (for example, by the purification process
for freezing read-only storage), it must likewise first gain control of the allocate-lock.

If any process, while waiting to gain control of the allocate-lock, notices a garbage collection in progress,
it may decide to not bother to initiate another garbage collection at all.

In any case, when a garbage collection is initiated, it sets gc-lock to zero. Notice that there can be only
one process with control of the allocate-lock and so there is no synchronization problem with setting gc-lock.
The process then must wait until block-io-status is 0 and indivisibly set it to −1. Next it must interrupt or
stop all the other processes. Then the copying compacting garbage collection can proceed. On completion
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it resets block-io-status to 0, then resets gc-lock to −1, then resumes any stopped processes, then returns to
the invoker.

The value of the symbol block-io-status is used to count the number of block I/O transfers in progress.
When a process wishes to initiate a block transfer it must wait until gc-lock is −1. Thus gc-lock prevents new
transfers from being initiated. The initiating process must then wait until block-io-status is non-negative, and
indivisibly increment it. On completion of the data transfer block-io-status must be indivisibly decremented.
(The reason for the second wait on block-io-status is that a garbage-collection process may have gotten in
after the I/O process checked gc-lock, made it non-negative, then gotten to block-io-status before the I/O
process, and set it to −1 and commenced a garbage collection. Without the second check the I/O process
might initiate a new data transfer before getting interrupted or stopped by the garbage collector.)

7. Systemic Quantities Vector

To speed up various operations a vector of commonly referred to constants and procedures is pointed
to by a register dedicated to the purpose. This vector contains the quantities T, (), the locks mentioned
above, constants defining the sizes some objects, and the addresses of the CONSers, and addresses of routines
which allocate de-allocate, and search special lookup blocks on the stack. Calling these routines is inexpensive
compared to a normal procedure call.

8. Conclusions

S-1 Lisp supports a number of non-standard programming constructs, such as multiple values and
functional data types, is both lexically and dynamically scoped, and is multiprocessed.

The multiprocessing requirements and the choice of a copying compacting garbage collector have put
strong constraints on the implementation design. Since the target machine is a time shared machine with no
dynamiclly writeable microstore it is not possible to resort to microcoding to overcome many of the problems,
as it is for Lisps on personal machines (e.g. [Weinreb 1981]). The tagged address architecture of the S-1
proves to be its saving grace enabling efficient implementation of the necessary runtime checks within the
standard macro-machine architecture.
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