
Common Lisp Object System

by

Linda G. DeMichiel and Richard P. Gabriel

Lucid, Inc.
707 Laurel Street

Menlo Park, California 94025
(415)329-8400

LGD@SAIL.STANFORD.EDU RPG@SAIL.STANFORD.EDU

with Major Contributions by

Daniel Bobrow, Gregor Kiczales, and David Moon

Abstract

The Common Lisp Object System is an object-oriented system that is based on the
concepts of generic functions, multiple inheritance, and method combination. All objects
in the Object System are instances of classes that form an extension to the Common Lisp
type system. The Common Lisp Object System is based on a meta-object protocol that
renders it possible to alter the fundamental structure of the Object System itself. The
Common Lisp Object System has been proposed as a standard for ANSI Common Lisp
and has been tentatively endorsed by X3J13.



Common Lisp Object System

by

Linda G. DeMichiel and Richard P. Gabriel

with Major Contributions by

Daniel Bobrow, Gregor Kiczales, and David Moon

1. History of the Common Lisp Object System

The Common Lisp Object System is an object-oriented programming paradigm de-
signed for Common Lisp. Over a period of eight months a group of five people, one from
Symbolics and two each from Lucid and Xerox, took the best ideas from CommonLoops
and Flavors, and combined them into a new object-oriented paradigm for Common Lisp.

This combination is not simply a union: It is a new paradigm that is similar in
its outward appearances to CommonLoops and Flavors, and it has been given a firmer
underlying semantic basis.

The Common Lisp Object System has been proposed as a standard for ANSI Common
Lisp and has been tentatively endorsed by X3J13.

2. The Common Lisp Object System View of Object-Oriented Programming

2.1 What the Common Lisp Object System Is

The Common Lisp Object System is an object-oriented system that is based on the
concepts of generic functions, multiple inheritance, method combination, and meta-objects.
All objects in the Object System are instances of classes that form an extension to the
Common Lisp type system.

A generic function is a function whose behavior depends on the classes or identities
of the arguments supplied to it. The methods associated with the generic function define
the class-specific behavior and operations of the generic function.

The Common Lisp Object System supports multiple inheritance in a similar man-
ner to CommonLoops and Flavors. Inheritance of methods and structure is based on a
linearization of the class graph.

1



§ 2The Common Lisp Object System View of Object-Oriented Programming

In the Common Lisp Object System classes and generic functions are first-class objects
with no intrinsic names. Thus it is possible and useful to create and manipulate anonymous
classes and generic functions.

The Common Lisp Object System supports a mechanism for method combination
that is both more powerful than that provided by CommonLoops and simpler than that
provided by Flavors.

The Common Lisp Object System is founded on a meta-object system which is capable
of supporting other object-oriented paradigms. In fact, the Object System itself can be
implemented within this meta-object system.

2.2 What the Common Lisp Object System Is Not

The Object System is not a single inheritance language. As such it is much more like
Flavors than like Smalltalk-80.

The Object System is not a message-passing language. If the behavior of generic
functions depended on the class of exactly one argument, where that argument was distin-
guished positionally, then it would be isomorphic to a message-passing language. But the
behavior of a generic function can depend on the classes of several arguments simultane-
ously.

The Object System does not attempt to solve problems of encapsulation or protection.
The inherited structure of a class depends on the names of internal parts of the classes from
which it inherits. The Object System does not support subtractive inheritance. Within
Common Lisp there is a primitive module system that can be used to help create separate
internal namespaces.

3. Goals of the Common Lisp Object System.

The primary goals that the design of the Common Lisp Object System attempts to
meet are the following:

1. To fit into Common Lisp in a natural way, both in terms of using functional notation
and in terms of extending the Common Lisp type system.

2. To provide a smooth growth path and easy transition for current users of Flavors
and CommonLoops.

2



§ 3 Goals of the Common Lisp Object System.

3. To provide a layered approach in which each layer provides functionality at an ap-
propriate level according to the sophistication of user needs.

4. To provide both a language to form the basis of a powerful programming environment
as well as a platform for the efficient delivery of applications written within the Object
System.

4. Design Criteria

The design of the Common Lisp Object System was founded on several design prin-
ciples.

1. Use a set of levels to separate programming language concerns from each other. The
first level provides a system of object-oriented programming that meets the needs
of most serious users, with a syntax that is crisp and understandable. The second
level provides a functional interface into the heart of the Object System for the
programmer who is writing very complex software or a programming environment;
this level is completely consistent with the first level. The first level is written in
terms of this second level. The third level provides the tools for the programmer
writing his own object-oriented language. It allows access to the primitive objects
and operators of the Common Lisp Object System. It is this level in which the
Object System itself can be written.

2. Make as many things as possible within the Object System first-class. Therefore,
classes and generic functions are first-class objects, whereas generic functions, for
example, are first-class objects in neither Flavors nor CommonLoops.

3. Provide a unified language and syntax. It is tempting, when designing a programming
language, to invent additional languages within the primary programming language,
where each additional language is suitable for some particular aspect of the overall
language. In Common Lisp, for example, the format function defines a language for
displaying text, but this language is not Lisp nor is it like Lisp.

4. Make the specification of the language as precise as possible. Though this may
seem an obvious design criterion, this criterion was not followed during the design of
Common Lisp.

3



§ 4 Design Criteria

5. Be willing to trade off complex behavior for conceptual and expository simplicity.
Though it may appear that the effect of this criterion on the Object System was
subtle, it led to radical simplifications to proposed functionality.

5. Classes

A class is an object that determines the structure and behavior of a set of other
objects, which are called its instances. It is an important feature of the Common Lisp
Object System that every Common Lisp object is an instance of a class. The class of an
object determines the set of operations that can be performed on that object.

Classes are represented by first-class objects that are themselves instances of classes.
The class of the class of an object is termed the metaclass of that object. The metaclass
determines the form of inheritance used by the classes that are its instances and the
representation of the instances of those classes. The Common Lisp Object System provides
a default metaclass that is appropriate for most programs. The Common Lisp Object
System meta-object protocol allows for defining and using new metaclasses.

A class can inherit structure and behavior from other classes. A class whose definition
refers to other classes for the purpose of inheriting from them is said to be a subclass of
each of those classes. The classes that are designated for purposes of inheritance are said
to be superclasses of the inheriting class. The inheritance relationship is transitive.

Classes are organized into a directed acyclic graph. There is a distinguished class
named t. The class t is a superclass of every other class.

The Common Lisp Object System maps the Common Lisp type space into the space
of classes. Many but not all of the predefined Common Lisp type specifiers have a class
associated with them that has the same name as the type. For example, an array is of
type array and of class array. Every class has a corresponding type with the same name
as the class.

A class that corresponds to a predefined Common Lisp type is called a standard
type class. Each standard type class has the class standard-type-class as a metaclass.
Users can write methods that discriminate on any primitive Common Lisp type that has
a corresponding class. However, it is not allowed to make an instance of a standard type
class with make-instance or to include a standard type class as a superclass of a class.

4



§ 5 Classes

5.1 Defining Classes

The macro defclass is used to define a new class. This macro is on the first of the three
levels. The function make-instance when applied to an appropriate metaclass provides
the same functionality on the second level.

The definition of a class consists of the following: its name, a list of its direct super-
classes, a set of slot specifiers, and a set of class options.

The direct superclasses of a class are those classes from which the new class inherits
structure and behavior. When a class is defined, the order in which its direct superclasses
are mentioned in the defining form is important. Each class has a local precedence or-
der , which is a list consisting of the class followed by its direct superclasses in the order
mentioned in the defclass form.

Each slot specifier includes the name of the slot and zero or more slot options. A slot
option pertains only to a single slot. The slot options of the defclass form allow for the
following: providing a default initial value form for the slot; requesting that methods for
appropriately named generic functions be automatically generated for reading or writing
the slot; controlling whether one copy of a given slot is shared by all instances or whether
each instance is to have its own copy of that slot; and specifying the type of the slot
contents.

Each class option pertains to the class as a whole. The available class options allow
for the following: requesting that methods for appropriately named generic functions be
automatically generated for reading or writing all slots defined by the new class; requesting
that a constructor function be automatically generated for making instances of the class;
and indicating that the instances of the class are to have a metaclass other than the default.

For example, the following two classes define a representation of a point in space. The
class x-y-position is a subclass of the class position:

(defclass position () ())

(defclass x-y-position (position)
((x :initform 0)
(y :initform 0))

(:accessor-prefix position-))

The class position is useful if we desire to create other sorts of representations for spatial
positions. The x- and y-coordinates are initialized to 0 in all instances unless explicit

5



§ 5 Classes

values are supplied for them. To refer to the x-coordinate of an instance of the class
x-y-position, position, one writes:

(position-x position)

To alter the x-coordinate of that instance, one writes:

(setf (position-x position) new-x)

5.2 Slots

Classes and class instances have named slots. The name of a slot is a symbol that
could be used as a Common Lisp variable name.

There are two kinds of slots: slots that are local to an individual instance and slots
that are shared by all instances of a given class. The :allocation slot option to defclass

controls the kind of slot that is defined.

In general, slots are inherited by subclasses. That is, a slot defined by a class is
also a slot implicitly defined by any subclass of that class unless the subclass explicitly
shadows the slot definition. A class can also shadow some of the slot options declared in
the defclass form of one of its superclasses by providing its own description for that slot.

Slots can be accessed in two ways: by use of generic functions defined by the defclass

form and by use of the primitive function slot-value.

The defclass syntax allows for generating methods to read and write slots. If a slot
accessor is requested, a method is automatically generated for reading the value of the
slot, and a setf method is also generated to write the value of the slot. If a slot reader is
requested, a method is automatically generated for reading the value of the slot, but no setf

method for it is generated. Readers and accessors can be requested for individual slots or
for all slots. Reader and accessor methods are added to the appropriate generic functions.
It is possible to modify the behavior of these generic functions by writing methods for
them.

The function slot-value can be used with any of the slot names specified in the
defclass form to access a specific slot in an object of the given class. Readers and accessors
are implemented by using slot-value.

Sometimes it is convenient to access slots from within the body of a method or a
function. The macro with-slots is provided for use in setting up a lexical environment in

6



§ 5 Classes

which certain slots are lexically available. It is also possible to specify whether the macro
with-slots is to use the accessors or the function slot-value to access slots.

5.3 Class Precedence

Each class has a class precedence list. The class precedence list is a total ordering
on the set of the given class and its superclasses for purposes of inheritance. The total
ordering is expressed as a list ordered from most specific to least specific.

The class precedence list is used in several ways. In general, more specific classes can
shadow, or override, features that would otherwise be inherited from less specific classes.
The method selection and combination process uses the class precedence list to order
methods from most specific to least specific.

The class precedence list is always consistent with the local precedence order of each
class in the list. The classes in each local precedence order appear within the class prece-
dence list in the same order. If the local precedence orders are inconsistent with each
other, no class precedence list can be constructed, and an error will be signaled.

6. Generic Functions

The class-specific operations of the Common Lisp Object System are provided by
generic functions and methods.

A generic function is a function whose behavior depends on the classes or identities
of the arguments supplied to it.

Like an ordinary Lisp function, a generic function takes arguments, performs a series
of operations, and returns values. An ordinary function has a single body of code that is
always executed when the function is called. A generic function might perform a different
series of operations and combine the results of the operations in different ways, depending
on the class or identity of one or more of its arguments. Like other operations in Lisp,
invoking a generic function requires examining the classes of its arguments at runtime, and,
though a compiler might be able to optimize away some of this runtime typing, method
selection and combination is a runtime affair.

The operations of a generic function are defined by its methods. The behavior of the
generic function results from which methods are selected for execution, the order in which
the selected methods are called, and how their values are combined to produce the value
or values of the generic function.

7



§ 6 Generic Functions

Thus, unlike an ordinary function, a generic function has a distributed definition,
corresponding to the definition of its methods. The definition of a generic function is
found in a set of defmethod forms, possibly along with a defgeneric-options form that
provides information about the properties of the generic function as a whole. Evaluating
these forms produces a generic function object.

Generic functions are first-class objects in the Common Lisp Object System. They
can be used in the same ways that ordinary functions can be used in Common Lisp. A
generic function is a true function that can be passed as an argument, used as the first
argument to funcall and apply, and stored in the function cell of a symbol. Ordinary
functions and generic functions are called with identical syntax.

6.1 Generic Function Objects

A generic function object comprises a set of methods, a lambda-list, a method com-
bination type, and other information.

The methods associated with the generic function define the class-specific behavior
and operations of the generic function. Thus, generic functions are objects that may be
specialized by the definition of methods to provide class-specific operations.

The lambda-list specifies the arguments to the generic function. It is an ordinary
function lambda-list with these exceptions: No &aux variables are allowed; optional and
keyword arguments may not have default initial value forms nor use supplied-p parameters.
The generic function passes to its methods all the argument values passed to it, and only
these; default values are not supported.

The method combination type determines the form of method combination that is
used with the generic function. The method combination facility controls the selection of
methods, the order in which they are run, and the values that are returned by the generic
function. The Common Lisp Object System offers a default method combination type that
is appropriate for most user programs. The Common Lisp Object System also provides a
facility for declaring new types of method combination for programs that require them.

The generic function object also contains information about the argument precedence
order (the order in which arguments to the generic function are tested for specificity when
selecting executable methods), the class of the generic function, and the class of the meth-
ods of the generic function. While the Common Lisp Object System provides default

8



§ 6 Generic Functions

classes for all generic function, method, and class objects, the programmer may choose to
implement any or all of these using classes of his own definition.

6.2 Defining Generic Functions

Generic functions are defined by means of the defgeneric-options and defmethod

macros, on the first level. On the second level, the function make-instance is used to
create a generic function.

If a defgeneric-options form is evaluated and a generic function of the given name
does not already exist, a new generic function object is created. This generic function
object is a generic function with no methods. The defgeneric-options macro may be
used to specify properties of the generic function as a whole—sometimes referred to as
the “contract” of the generic function. These properties include the argument precedence
order, the method combination type, the class of the generic function, and the class of the
methods of the generic function.

When a new defgeneric-options form is evaluated and a generic function of the
given name already exists, the existing generic function object is modified. This does not
modify any of the methods associated with the generic function.

The defmethod form is used to define a method. If no generic function of the given
name already exists, however, it automatically creates a generic function with default
values for the argument precedence order, the generic function class, the method class,
and the method combination type. The lambda-list of the generic function is congruent
with the lambda-list of the new method. In general, two lambda-lists are congruent if they
have the same number of required parameters, the same number of optional parameters,
and the same treatment of &allow-other-keys.

When a defmethod form is evaluated and a generic function of the given name
already exists, the existing generic function object is modified to contain the new method.
The lambda-list of the new method must be congruent with the lambda-list of the generic
function.

7. Methods

The class-specific operations provided by generic functions are themselves defined and
implemented by methods. A generic function can have several methods associated with it,
and the class or identity of each argument to the generic function indicates which method
or methods to use.

9



§ 7 Methods

7.1 Method Objects

A method object contains a method function, an ordered set of parameter specializers
that specify when the given method is applicable, and an ordered set of qualifiers that are
used by the method combination facility to distinguish among methods. Each required
formal parameter of each method has an associated parameter specializer, and the method
is expected to be invoked only on arguments that satisfy its parameter specializers.

A parameter specializer is either a class or a list of the form (quote object).

A method can be selected for a set of arguments when each required argument satisfies
its corresponding parameter specializer. An argument satisfies a parameter specializer if
either of the following conditions holds:

1. The parameter specializer is a class and the argument is an instance of that class or
an instance of any subclass of that class

2. The parameter specializer is (quote object) and the argument is eql to object.

A method all of whose parameter specializers are t is a default method ; it is always
part of the generic function but often shadowed by a more specific method.

Methods can have qualifiers, which give the method combination procedure a way to
distinguish between methods. A method that has one or more qualifiers is called a qualified
method. A method with no qualifiers is called an unqualified method. A qualifier is any
object other than a cons, that is, any non-nil atom. By convention, qualifiers are usually
keyword symbols.

In standard method combination, unqualified methods are also termed primary meth-
ods and qualified methods have a single qualifier that is either :around, :before, or :after.

7.2 Defining Methods

The macro defmethod is used to create a method object. A defmethod form con-
tains the code that is to be run when the arguments to the generic function cause the
method that it defines to be selected. If a defmethod form is evaluated and a method
object corresponding to the given generic function name, parameter specializers, and qual-
ifiers already exists, the new definition replaces the old.

Each method definition contains a specialized lambda-list, which specifies when that
method can be selected. A specialized lambda-list is like an ordinary lambda-list except

10



§ 7 Methods

that a parameter specifier may occur instead of the name of a parameter. A parameter
specifier is a list consisting of a variable name and a parameter specializer name. Every
parameter specializer name is a Common Lisp type specifier, but the only Common Lisp
type specifiers that are parameter specializers names are type specifier symbols with cor-
responding classes and type specifier lists of the form (quote object). The form (quote

object) is equivalent to the type specifier (member object).

Only required parameters can be specialized, and each required parameter must be a
parameter specifier. For notational simplicity, if some required parameter in a specialized
lambda-list is simply a variable name, the corresponding parameter specifier is taken to
be (variable-name t).

A future extension to the Object System might allow optional and keyword parameters
to be specialized.

A method definition may optionally specify one or more method qualifiers. A method
qualifier is a non-nil atom that is used to identify the role of the method to the method
combination type used by the generic function of which it is part.

Generic functions can be used to implement a layer of abstraction on top of a set of
classes. For example, the class x-y-position can be viewed as containing information in
polar coordinates.

Two methods are defined, called position-rho and position-theta, that calculate
the ρ and θ coordinates given an instance of the class x-y-position.

(defmethod position-rho ((pos x-y-position))
(let ((x (position-x pos))

(y (position-y pos)))
(sqrt (+ (* x x) (* y y)))))

(defmethod position-theta ((pos x-y-position))
(atan (position-y pos) (position-x pos)))

It is also possible to write methods that update the ‘virtual slots’ position-rho and
position-theta:

(defmethod-setf position-rho ((pos x-y-position)) (rho)
(let* ((r (position-rho pos))

(ratio (/ rho r)))
(setf (position-x pos) (* ratio (position-x pos)))
(setf (position-y pos) (* ratio (position-y pos)))))

11



§ 7 Methods

(defmethod-setf position-theta ((pos x-y-position)) (theta)
(let ((rho (position-rho pos)))

(setf (position-x pos) (* rho (cos theta)))
(setf (position-y pos) (* rho (sin theta)))))

To update the ρ-coordinate one writes:

(setf (position-rho pos) new-rho)

which is precisely the same syntax that would be used if the positions were explicitly stored
as polar coordinates.

8. Class Redefinition

The Common Lisp Object System provides a powerful class-redefinition facility.

When a defclass form is evaluated and a class with the given name already exists, the
existing class is redefined. Redefining a class modifies the existing class object to reflect
the new class definition.

When a class is redefined, changes are propagated to instances of it and to instances of
any of its subclasses. The updating of an instance whose class has been redefined (or any
of whose superclasses have been redefined) occurs at an implementation-dependent time,
but will usually be upon the next access to that instance or the next time that a generic
function is applied to that instance. Updating an instance does not change its identity as
defined by the eq function. The updating process may change the slots of that particular
instance, but it does not create a new instance.

Users may define methods on the generic function class-changed to control the class
redefinition process. The generic function class-changed is invoked automatically by the
system after defclass has been used to redefine an existing class.

For example, suppose it becomes apparent that the application that requires rep-
resenting positions uses polar coordinates more than it uses rectangular coordinates. It
might make sense to define a subclass of position that uses polar coordinates:

(defclass rho-theta-position (position)
((rho :initform 0)
(theta :initform 0))

(:accessor-prefix position-))

12



§ 8 Class Redefinition

The instances of x-y-position can be automatically updated by defining a class-changed

method:

(defmethod class-changed ((old x-y-position)
(new rho-theta-position))

;; Copy the position information from old to new to make new
;; be a rho-theta-position at the same position as old.
(let ((x (position-x old))

(y (position-y old)))
(setf (position-rho new) (sqrt (+ (* x x) (* y y)))

(position-theta new) (atan y x))))

At this point we can change an instance of the class x-y-position, p1, to be an instance
of rho-theta-position using change-class:

(change-class p1 ’rho-theta-position)

9. Inheritance

Inheritance is the key to program modularity within the Common Lisp Object Sys-
tem. A typical object-oriented program consists of several classes, each of which defines
some aspect of behavior. New classes are defined by including the appropriate classes as
superclasses, thus gathering desired aspects of behavior into one class.

9.1 Inheritance of Slots and Slot Description

In general, slot descriptions are inherited by subclasses; that is, slots defined by a
class are usually slots implicitly defined by any subclass of that class unless the subclass
explicitly shadows the slot definition. A class can also shadow some of the slot options
declared in the defclass form of one of its superclasses by providing its own description
for that slot.

In the simplest case, only one class in the class precedence list provides a slot descrip-
tion with a given slot name. If it is a local slot, then each instance of the class and all of its
subclasses allocate storage for it. If it is a shared slot, the storage for the slot is allocated
by the class that provided the slot description, and the single slot is accessible in instances
of that class and all of its subclasses.

More than one class in the class precedence list can provide a slot description with a
given slot name. In such cases, at most one slot with a given name is accessible in any

13



§ 9 Inheritance

instance, and the characteristics of that slot involve some combination of the several slot
descriptions.

Methods that access slots know only the name of the slot and the type of the slot’s
value. Suppose a superclass provides a method that expects to access a shared slot of a
given name and a subclass provides a local description of a local slot with the same name.
If the method provided by the superclass is used on an instance of the subclass, the method
accesses the local slot.

9.2 Inheritance of Methods

A subclass inherits methods in the sense that any method applicable to an instance
of a class is also applicable to instances of any subclass of that class (all other arguments
to the method being the same).

The inheritance of methods acts the same way regardless of whether the method was
created by using defmethod or by using one of the defclass options that cause methods
to be generated automatically.

10. Class Precedence List

The class precedence list is a linearization of the subgraph consisting of a class C

and its superclasses. The defclass form for a class provides a total ordering on that class
and its direct superclasses. This ordering is called the local precedence order . It is an
ordered list of the class and its direct superclasses. A class precedes its direct superclasses,
and a direct superclass precedes all other direct superclasses specified to its right in the
superclasses list of the defclass form. For every class in the set of C and its superclasses,
we can gather the specific relations of this form into a set, called R.

R may or may not generate a partial ordering, depending on whether the relations are
consistent; we assume they are consistent and that R generates a partial ordering. This
partial ordering is the transitive closure of R.

To compute the class precedence list at C, we topologically sort C and its superclasses
with respect to the partial ordering generated by R. When the topological sort algorithm
must select a class from a set of two or more classes, none of which are preceded by other
classes with respect to R, the class selected is chosen deterministically. The rule that was
chosen for this selection process is designied to keep chains of superclasses together in the
class precedence list. That is, if C1 is the unique superclass of C2, C2 will immediately
precede C1 in the class precedence list.

14



§ 10 Class Precedence List

We require that an implementation of Common Lisp Object System signal an error if
R is inconsistent, that is, if the class precedence list cannot be computed.

11. Method Combination

When a generic function is called with particular arguments, it must determine what
code to execute. This code is termed the effective method for those arguments. The
effective method can be one of the methods of the generic function or a combination of
several of them.

Choosing the effective method involves the following decisions: which method or
methods to call; the order in which to call these methods; which method to call when
call-next-method is invoked; what value or values to return.

The effective method is determined by the following three steps:

1. Selecting the set of applicable methods;

2. Sorting the applicable methods by precedence order, putting the most specific method
first;

3. Applying method combination to the sorted list of applicable methods, producing
the effective method.

When the effective method has been determined, it is called with the same arguments
that were passed to the generic function. Whatever values it returns are returned as the
values of the generic function.

The Common Lisp Object System provides a default method combination type, stan-
dard method combination, that is designed to be simple, convenient, and powerful for most
applications.

11.1 Standard Method Combination

Standard method combination is the default method combination type. Standard
method combination recognizes four roles for methods, as determined by method qualifiers.

Primary methods define the main action of the effective method, while auxiliary meth-
ods modify that action in one of three ways. A primary method has no method qualifiers.
The auxiliary methods are :before, :after, and :around methods.

The semantics of standard method combination are:

15



§ 11 Method Combination

If there are any :around methods, the most specific :around method is called. Inside
the body of an :around method, call-next-method can be used to immediately call the
next method. When the next method returns, the :around method can execute more
code. By convention, :around methods almost always use call-next-method.

If an :around method invokes call-next-method, the next most specific :around

method is called, if one is applicable. If there are no :around methods or if call-next-

method is called by the least specific :around method, the other methods are called as
follows:

1. All the :before methods are called, in most specific first order. Their values are
ignored.

2. The most specific primary method is called. Inside the body of a primary method,
call-next-method may be used to pass control to the next most specific primary
method. When that method returns, the first primary method can execute more
code. If call-next-method is not used, only the most specific primary method is
called.

3. All the :after methods are called in most specific last order. Their values are ignored.

If no :around methods were invoked, the most specific primary method supplies the
value or values returned by the generic function. Otherwise, the value or values returned
by the most specific primary method are those returned by the invocation of call-next-

method in the least specific :around method.

An error is signaled if call-next-method is used in a :before or :after method or if
call-next-method is used and there is no next method remaining.

In standard method combination, if there are any applicable methods at all, then there
must be an applicable primary method. In cases where there are applicable methods, but
no primary method, an error is signaled.

Standard method combination allows no more than one qualifier per method.

If only primary methods are used, standard method combination behaves like Com-
monLoops. If call-next-method is not used, only the most specific method is invoked;
that is, more general methods are shadowed by more specific ones. If call-next-method

is used, the effect is the same as run-super in CommonLoops.

16



§ 11 Method Combination

If call-next-method is not used, standard method combination behaves like :dae-

mon method combination of New Flavors, with :around methods playing the role of
whoppers, except that the ability to reverse the order of the primary methods has been
removed.

The use of method combination can be illustrated by the following example. Suppose
we have a class called general-window, which is made up of a bitmap and a set of
viewports.

(defclass general-window ()
((initialized :initform nil)
(bitmap :type bitmap)
(viewports :type list))

(:accessor-prefix general-window-))

The viewports are stored as a list. We presume that it is desirable to make instances of
general windows but to not create their bitmaps until they are actually needed. Thus
we see that there is a flag, called initialized, that states whether the bitmap has been
created. The bitmap and viewport slots are not initialized by default.

We now wish to create an announcement window that will be used for messages that
must be brought to the user’s attention. When a message is to be announced to the
user, the announcement window is exposed, the message is moved into the bitmap for the
announcement window, and finally the viewports are redisplayed.

(defclass announcement-window (general-window)
((contents :initform "" :type string))
(:accessor-prefix announcement-window-))

(defmethod display :around (message (w general-window))
(unless (general-window-initialized w)
(setf (general-window-bitmap w) (make-bitmap))
(setf (general-window-viewports w)

(list (make-viewport (general-window-bitmap w))))
(setf (general-window-initialized w) t)))

(defmethod display :before (message (w announcement-window))
(expose-window w))

(defmethod display :after (message (w announcement-window))
(redisplay-viewports w))

(defmethod display ((message string) (w announcement-window))
(move-string-to-window message w))

17



§ 11 Method Combination

To make an announcement, the generic function display is invoked on a string and
an annoucement window. The :around method is always run first; if the bitmap has not
been set up, this method takes care of it. The primary method for display simply moves
the string (the announcement) to the window; the :before method exposes the window;
and the :after method redisplays the viewports. When the window’s bitmap is initialized,
the sole viewport is made to be the entire bitmap. The order in which these methods are
invoked is: 1. the :around method, 2. the :before method, 3. the primary method, and
4. the :after method.

11.2 Defining Other Types of Method Combination

The programmer can define new forms of method combination by using the define-

method-combination macro.

There are two forms of define-method-combination. The short form is a simple
facility for the cases that have been found to be most commonly needed. The long form is
more powerful but more verbose. It resembles defmacro in that the body is an expression
that computes a Lisp form, usually using backquote. Thus, arbitrary control structures
can be implemented. The long form also allows arbitrary processing of method qualifiers.

12. Meta-Objects

The Common Lisp Object System provides the predefined meta-objects standard-

method and standard-generic-function.

The class standard-method is the default class of methods defined by defmethod

or defmethod-setf.

The class standard-generic-function is the default class of generic functions defined
by defmethod, defmethod-setf, defgeneric-options, or defgeneric-options-setf.

The Common Lisp Object System also provides the standard method combination
type, which is not implemented as a meta-object, but as a method.

13. References

Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya Keene, Gregor Kiczales,
and David A. Moon, Common Lisp Object System Specification, X3J13 Document 87-002.

Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and
Frank Zdybel, “CommonLoops: Merging Lisp and Object-Oriented Programming,” ACM
OOPSLA Conference, 1986.

18



§ 13 References

Adelle Goldberg and David Robson, Smalltalk-80: The Language and its Immplementation,
Addison-Wesley, Reading, Massachusetts, 1983.

Guy L. Steele, Common Lisp: The Language, Digital Press, 1984.

Reference Guide to Symbolics Common Lisp: Language Concepts, Symbolics Release 7
Document Set, 1986.

19


